
acteristics. However, the discovery of these defects enables one to concentrate attention on the zones which need particular care 

during tests and debugging the design. 

The reported results show that the preliminary flow visualization in the models of laser pumping loops considerably 

simplifies the work and makes it possible to avoid mistakes at the stage of developing and designing a laser. The design proce- 

dure is very simple and the consumed time and capital outlays are incomparably lower than those related with adapting a loop 

from the unsuccessfully designed one. In modernizing the available lasers, hydraulic modeling is an effective tool for obtaining 

the desired result with minimally changing the design. 

NOTATION 

D, inner diameter of the vane array of the rotor; L, length of the vane array along the axis of rotation; U, peripheral 

velocity of the rotor. 
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T H E  K I N E T I C  M O D E L  O F  P A R T I C L E  T R A N S F E R  I N  T U R B U L E N T  

F L O W S  W I T H  C O N S I D E R A T I O N  O F  C O L L I S I O N S  

L. I. Zaichik UDC 532.529 

The work presents the kinetic model of particle dynamics in turbulent flows taking into consideration inelastic 

collisions. Transfer coefficients of the dispersed phase in constrained flows are found on the basis of this model. 

To describe a particle movement in rarefied dispersed flows (i.e. for low volume concentration of the dispersed phase), 
greater attention should be paid to the interaction between particles and turbulent pulsations of the carrier flow, since the role 

of collisions between the particles proper is not essential. The kinetic equation for the probability density function [PDF] of the 

particle velocity in turbulent flows without taking account of collisions was obtained in [1, 2]. For large particles (~/T >> 1L) in 

an isotropic turbulent flow this equation develops into the known Fokker-Planck equation for the Brownian movement [3, 4]. 

A solution of the equation for the PDF can be constructed with the help of the perturbation method [4-6] widely used in the 

kinetic theory of gases for the solution of the Boltzmann equation [7, 8]. On the contrary, in the case of the analysis of particle 

dynamics in sufficiently dense dispersed flows the collisions of particles between themselves play a determining role. An elemen- 

tary kinetic theory of highly concentrated dispersed systems is formed in [9]. Studies [10, 11] offer the kinetic models of particle 

transfer in dispersed flows, based on the solution of the Boltzmann equation by the perturbation method and further developing 
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the Enskog approach for dense gases for the case of inelastic particle collisions. The present work proposes a kinetic model for 

describing particles in turbulent flows taking into consideration their interaction during collisions, which generalizes the results 

for rarefied [4, 6] and concentrated [10, 11] dispersed systems. 

The equation for the PDF of the velocity of large particles disregarding their rotation can be presented in the form 

T [ F ] §  F ] = N [ F ] ,  

T [ F ] - -  D 02F + 1 O(vh--Vk).F 

~z OVhOVh �9 Ovk (1) 

OF OF Uk Vh ~ OF 
N [ F ] = ~ - + - v h - -  §  - -  §  

Oxh \ "c ,] Ovh 

Here T[F] is the operator, describing the particle interaction with the carrier turbulent flow; J[F, F] is the Boltzmann 

operator of collisions in the Enskog form [7], and N[F l is the convective operator, defining the deviation of the probability 

density of the particle velocity from the equilibrium Maxwellian distribution. 

The integration of Eq. (1) in the velocity space can result in equations for the concentration, mean velocity, and 

pulsation energy of the dispersed phase. The equation for the volume concentration of particles has the form 

Oq~ Oq~Vh. 
- - - §  - -0 .  

Ot Oxh 

q~ = f Fdv, Vi = .[ viFdv/% 

(2) 

Let us write the equation for the dispersed phase movement: 

OVi + Vk OV~ U~ - -  Vi 1 OPih 
- § f ~  (3) 

Ot Ox~ z ~ Oxh 

Here Pij = Pij k + Pij c is the total stress tensor in the dispersed phase; Pij k = ~P(vi'vj' ) are the stresses caused by the kinetic 

pulsation movement  of particles, and Pij c are the stresses, which define the momentum transfer during particle collisions. 

The equation of the balance of the particle kinetic pulsation energy has the form: 

O~kp I (~q)VhkP - -  Pih OVl § ~9 3 D __ 2kp - Q. (4) 
Ot v Ox~ Oxk z "~ Oxk 

The first term on the right side of Eq. (4) describes the generation of the dispersed phase pulsation energy from the 

mean movement due to the velocity shift. The second term defines the pulsation energy exchange with the turbulent carrier flow. 

The third term describes the pulsation energy diffusion transfer. The quantity Q determines the pulsation energy dissipation due 

to particle collisions. The total pulsation energy flux qi = qi k + qi c is combined from the kinetic part qi k = ~P(Vi'Vk'Vk')/2 and 
from the term qi c, stipulated by particle collisions. 

It should be noted that the division of the stress tensor and pulsation energy flux into the kinetic part and the part 
stipulated by collisions is arbitrary and meaningful from the procedural (computational) point of view. 

In accordance with the solution of the kinetic equation for dense gases by the Enskog method [7], the integral of 
collisions is presented in the form 

J [F, F] = YJo [F, F] § J I [F ,  F] § .... (5) 

where J0[F, F] is the Boltzmann collision integral (~o --, 0); Jt[F, F] is the contribution of the first terms into the expansion of the 

collision integral into the Taylor series in terms of the parameter, proportional to the particle dimension, and Y(~o) is the 

quantity which can be interpreted as the ratio of the number of particle collisions in concentrated and rarefied media. 

Within the framework of the assumption of a small deviation of particle distribution from equilibrium, the solution of 

Eq. (1) with allowance for (5) can be found in the form of a series F = F 0 + F 1+ ..., where the functions F 0 and F 1 satisfy the 
equations 

T [Fo] § YJo [Fo, Fo] = 0, 

T [Fa] § Y (Jo [Fo, F1] -t- Jo [F1, Fo]) = N [Fo] - -  J1 [Fo, Fo] = L [Fo]. 

(6) 

(7) 
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The Maxwellian distribution is the solution for Eq. (6) 

F o = ~ p (  3 ) a/2 4akp , exp ( 3vs v~ 
4kp )" (8) 

According to (8): 
�9 ~ 2 

< v,v, ) = -g-/ep6i~, ( v;v',v;, ) = o. (9) 

The quantities Pij c, qi c, and Q, taking into account possible energy loss because of inelastic particle collisions, have the 
form [10, 11]: 

�9 ) ( , 1 
pC. = ---5-4 (1 q- e) @Y ( v;v i > q- --if- < v'kv'~ ) 8~i 

4 ( l + e ) c p ~ y d , r  2k v : 3 OV~ ) 
3 --TU- I,--if- Su + ~ ~j  , 

qC = ---ff-3 (1 4- e) tp2Y ( v;v2v~ ) - -  2 (1 + e) cp2Ydp / 2kPas~ Ok,,ox, 

\--5-2-~1 ox~ ' 

(lO) 

(11) 

(12) 

where 

Si j= OVa+ OV~ 2 OVh 6ii. 
Oxi Ox~ 3 Ox~ 

Substituting Eq. (8) into the right side of Eq. (7) and using (2)-(4) taking into account (9)-(12), we obtain 

{[ ] ( L [ F o ] = F o  1 + ~ ( 1  +e) (3e- -1)~pY ~ v,v i 
s 3 - a T - ,  + ,  

(13) 
�9 j( ) } 3 (1 + e) ~ (2e - -  1) ~Y 3v'~ v'k 5 v; Okp 

d- 1 -4---if- 4kp 2 hi, Oxi " " 

Expression (13) is written ignoring the term with the dispersed phase concentration gradient, contributing noticeably 
into the diffusive transfer of the pulsation energy only for essentially inelastic particle collisions. 

Let us define separately the solutions to equations 

T [F~rl = L [Fo], (14) 

satisfying the normalization conditions 

1 (15) do [Fo, Fw] + Jo [FIj, Fol = T L [Fo], 

i FldV = j' ~,;FlaV - -  ; v; v ; F l a v  = O. 

Then, if the solution to Eqs. (14) and (15) has the form F I T =  ATT(Vi), EIj = Aj{0(vi), where A T and Aj are constants, 
then the solution to Eq. (7) will be 

Ar Az 
F 1  - -  q) (vi). (16) 

AT 27 As 

The solution to Eq. (14) taking account of (13) has the form 

-r { @ [  2 ( l + e ) ( 3 e  1) 1 F 1 r = - - F o - - ~ - p  1 + ' - ~ -  - -  qoYj • 

• (v;v;, ~v'~vs 81J ) ~OV~ + [.. 1 q- @ (1 + e) z ( 2 e -  1) q~Ylx  (17) 
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( 3v'hvs 5 ) v i  Ok v }.. 
X 4kp 2 3 O& 

The approximate solution to Eq. (15), taking into account (13), obtained by the retention of only one term in the 
expansion in terms of the Sonin polynomials and conforming to the thirteen-moment Grad approximation in the case of inelastic 
interaction of solid spheres, has the form 

( @ ) , / 2  5d~ 4 
Fls = --Fo 64k~/z~Y (1 q- e)(3-- e) • 

2 ( l + e ) ( 3 e - - 1 ) c p Y  vivj 6ij + • 1+--5--  3 - ~ f  

+ ( l + e ) ( 4 9 - - 3 3 e )  1 ( l §  ~(2e-1)q0Y • 

• ( 3v'hvs 5 )  , Ok v I 
\ 4 le~ 2 vi Oxl J" 

(18) 

Let us define the kinetic stresses and the pulsation energy flux 

2 
(19) 

1 Okp (20) 
qf --5- S  ;v; viFldv = ' 

where, according to Eqs. (16)-(18), the viscosity and pulsation energy diffusion coefficients v k and Ak, resulting from the kinetic 
transfer, are equal to: 

V T V j  A T  A j  
v K - -  , A K  ~ , 

Vr -k vs Ar + As 

Vr= [1 +--~--2 (1 ff-e)(3e--l)q~Y l Tkp , 3  

v j =  3 24 (l + e)(3 - -  e) ~Y 1 +  (1 ~-e)(3e--1)q~Y , (21) 
J 

[ t Ar = 10 1 4- 3 ( l+e)  2(2e--1) 
2-5- --g- 

/ 25dp I 3 l Aj : I/' 2z~le; 
3 6(1 q- e)(49--33e)q0Y 1 q - -~ - (1  +e)2(2e--1)q0Y . 

The stress and the diffusion flux of the pulsation energy, stipulated by the momentum and energy transfer as a result of 
particle collisions, according to Eqs. (10), (11), (19), and (20), are defined by relations 

pC = [ @ ( 1  + e)@Ykp--q~ OV~ ] 
Oxu J 6 i j - -  qovcS/j, (22) 

qC ~-__%/k C Okp (23) 
Oxi 

Here the shear viscosity coefficient %, the volume viscosity coefficient ~, and the pulsation energy diffusion coefficient 
Ac, caused by collisions, are equal to: 

v c = (1 + e) q0Y ( vz< + dv 
, V 3~ j '  

~= @ ( l  +e)q)Ydp ~ 2k, 
3a ' (24) 

= 2 (1 + e) qoY ( --U A x + d, ] / / - g d - / "  
3 2/~p Ac 
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Total stresses and the pulsation energy diffusion flux in the dispersed phase, in accordance with Eqs. (19), (20), (22), and 
(23), are defined by the expressions 

PgJ = ( Pv -- ~ OVh ) 5ij -- q~vpSij, (25) 
�9 Oxh  / 

Okp , (26) 
q~ = --~Av Ox~ 

where the pressure Pp, the shear viscosity coefficient Vp, and the pulsation energy diffusion coefficient Ap of particles, in view of 

Eq. (24), are equal to 

2 
- q~,~p I1 + 2 (1 + e) qDY], (27) Pv 3 

[ 4 (1 -t-e)q~Yl 3 w , = w ~ < + ' : c =  1 + - - 5 -  wK-t--5 --g' (28) 

[ , 6 ] 3 (29) 
A p = A K + A c =  I-r---5-(1 -+-e)q~Y AK+ --~-~. 

Expressions (12), (25), and (26) complete the system of movement Eqs. (2)-(4), describing the mass, momentum, and 

pulsation energy transfer in the dispersed phase. Let us examine the limiting relations for the transfer coefficients Vp and Ap in 

rarefied and concentrated dispersed systems. 
For ~o << 1 Eqs. (28) and (29), with consideration of the terms of the first order by ~o (Y = 1 + O(~o)) yield 

Tk. 2 (1 + e) [ 
Vp-- - -  ~ ~k, ( 3 e - - 1 ) - -  

3 15 / 
4(3--e)-~klp/2 l / '  3 + 6dp [ / / - ~ ]  

A p =  2710 Zkp+ 10(1+e)27 Tkp[--~-(1 @e) (2e- -1 ) - -  

4(49--33e)'rk~/245@ 1 / ~  ~ / 3~2 "rk~/~dp ] - + - -  ~/'  ~ + o (r 

It is seen from these relations, that depending on the value of the parameter A = dp/~kp ]/2 the influence of the flow 
constraint for small volume concentrations ~ may lead to both increase and decrease in particle transfer coefficients. 

The possibility of nonmonotonic change in the transfer coefficients of the particle concentration for small values of the 
parameter A is confirmed by the dependences, constructed according to Eqs. (28) and (29) (see Fig. 1 below). In concentrated 
systems, in contrast to rarefied ones, the growth of the transfer coefficients takes place along with the growth of the particle 

concentration for all values of the parameter A. 
Although the obtained results, based on the presentation of the collision integral with the help of the Enskog expansion 

are valid, strictly speaking, for the rarefied dispersed medium, it can be expected that for successful approximation of the 
dependence Y(~) they can be used in concentrated systems as well. Thus, for a high volume concentration of particles the 
dependence Y(~) can be found from the condition that expression (27) for pressure coincides with the equation of state for the 

dense gas of elastic spherical particles [7] 

Pp ~ 2q)kv 
3[1 --(q~/%~)~/a] , 

whence 

1 Y =  
4~/3q~ 2/3 [1 - -  (~01q~)~/31 (30) 

Dependence (30) is not valid for rarefied dispersed system (for ~o -~ 0) and, therefore, it can be used for sufficiently 
concentrated systems only. Taking into account (30), expression (12) for the pulsation energy dissipation becomes close to the 

one obtained in [91. 
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Fig. 1. The shear viscosity coefficient (a) and the pulsation energy diffusion coefficient (b): 

1) A = 0.2; 2) 0.5; 3, 1; 4, 2; unbroken curves) e = 1.0; dashed curves) 0.9. 

For the approximation of Y(~o) within the entire range of ~o, i .e . ,  f o r  0 < ~o < ~Om, d e p e n d e n c e  [12 ]  can be used 

Y = [1 - -  (q0/%yl/31-1, 

satisfying the condition Y --, 1 for ~o -* 0 and having the same asymptotic character for ~o -~ ~'m as (30). 

NOTATION 

t, time; xi, coordinate; vi, vi' , and Vi, actual, pulsation and mean particle velocities; Ui, mean velocity of the carrier flow; 

r, time of dynamic particle relaxation; T, time integral turbulence scale; fi, external mass force and interphase interaction force; 

~o, dispersed phase volume concentration; dp, particle diameter; D = 2Tk/3, turbulent diffusion coefficient of inertialess impurity; 

k, turbulent energy of carrier flow; kp = (Vk'Vk')/2, particle pulsation energy; e, coefficient of momentum recovery during a 

collision; Vp0 , Ap0 , transfer coefficients for ,p = 0; Pp = Vp/Vp0;/~/mp0 and (I) = ~oY. 
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